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ABSTRACT

A formulation and computer program is developed for the geometrically
nonlinear dynamic analysis of shells of revolution under symmetric and
asymmetric loads. The nonlinear strain energy expression is evaluated
using linear functions for all displacements, Five different procedures
are examined for solving the equations of equilibrium with Houbolt's meth-
od proving to be the most suitable. Solutions are presented for the sym-
metrical and asymmetrical buckling of shallow caps under step pressure
loadings and a wide variety of other problems including some highly non-

linear ones.
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NL = nonlinear
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n = harmonic number
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INTRODUCTION

The geometrically nonlinear static analysis of structures has made
considerable progress since the original finite element paper by Turner,
Dill, Martin, and Mielosh.l In Ref. 1, it was proposed that the nonlin-
ear problem be analyzed as a sequence of linear problems using a geo-
metric stiffness matrix. This approach has been used by many investiga~
tors in more recent years and has been refined to a very high degree.

In fact, it is safe to say that the geometric stiffness method approach
is the most widely used method for the geometrically nonlinear analysis
of structures by the matrix displacement method with the Newton-Raphson
method of solution being a distant second. Rather exhaustive survey
articles on the nonlinear analysis of structures by matrix methods have
been presented by Martin2 and Oden.3

For a shell of revolution under asymmetrical loading, the incremen-
tal stiffness method is difficult to apply due to the coupling which the
nonlinear terms introduce among the various Fourier harmonics. This gives
rise to a large number of equations which must be solved after new coef-
ficients are generated at each load increment. For example, twenty har-
monics and fifty elements would give rise to 4080 equations of equilibrium.

The difficulty of repeated solutions of a large number of equations
has been circumvented by Stricklin, Haisler, MacDougall, and Stebbins4
who place the nonlinear terms on the right-hand side of the equations of
equilibrium and treat them as additional loads. The method of solution
is by iteration and has been found to yield accurate results for a large

majority of practical problems. For highly nonlinear problems, the




equations as formulated in Ref. 4 are currently being solved by the Newton-
Raphson procedure with the coupling between harmonics being ignored. The
present paper presents an extension of the work presented in Ref. 4 to the
nonlinear dynamic analysis of shells of revolution under both symmetric and
asymmetric loadings. It will be demonstrated that the approach presented
herein is valid for highly nonlinear problems. It is assumed in the present
work that the material is elastic and nonlinearities are due to moderate
rotations.

Computer programs for the large deflection elastic-plastic analysis
of beams, rings, and plates have been developed by Witmer, Balmer, Leech,
and Pian5 and Krieg and Duffey.6 In Refs. 5 and 6, the governing equations
of motion are written in finite difference form in both space and time.

The solution is straight-forward in that the equations are solved sequen-
tially with no coupling existing between equations. Correlation studies
have been conducted by Duffey and Key,7 Krieg, Duffey, and Key,8 and Balmer
and Witmer.9 The correlation studies have demonstrated that the computer
programs as developed in Refs. 5 and 6 may be used to compute adequately
the large deflection dynamic response of highly nonlinear elastic-plastic
simple structures.

Leech, Witmer, and PianlO and Wrenn, Sobel and Silsbyll have presented
formulations and computer programs for the nonlinear analysis of general
thin shells. The equations governing the response of a shell under arbi-
trary impulsive loading are developed in tensor form and represented by
finite differences in space and time. Solutions are presented for a cy-

lindrical panel10 and a cylinder‘ll In addition to finite differences in




time, the Adams-Moulton and fourth order Runge-Kutta methods were used in
Ref. 11. An interesting conclusion drawn in Ref., 11 is that the size of
the time increment needed for numerical stability in the finite difference
method of solution is smaller than the time increment needed to prevent
excessive truncation error.

Stability studies on the different methods used to approximate the
second derivatives in time have recently been conducted by Leech, Hsu,
and Mack,l2 Johnson,13 Krieg,14 and Nickell.15 However, with the exception
of Ref. 14, the studies have been limited to the linear equations of motion
and are not applicable to the nonlinear analysis. 1In particular, the un-
conditional stability exhibited by Houbolt'sl3 and Neumark's15 (vy = %,

B = %) methods for the linear case does not exist in the nonlinear formu-~
lation presented in this report.

It is apparent from the cited references that considerable progress
has been made in analyzing the elastic-plastic nonlinear dynamic behavior
of shells using finite differences in the spatial coordinates. However,
little progress has been made in the analysis of the nonlinear dynamic
behavior of shells through the finite element approach. Further, there
does not seem to exist any computer program which is capable of analyzing
the nonlinear asymmetrical dynamic behavior of shells of revolution in a
reasonable period of computer time. The purpose of the present paper is
to present such a program and demonstrate through examples its range of
applicability.

The research presented here uses the curved element of Stricklin,

i
Navaratna, and Pianl6 and the displacement function of Grafton and Strome.




The nonlinear shell theory of Novozhilov18 is assumed to be applicable
with the further assumption of small strains and moderate rotations being
made. Reference 4 presents a more complete review of the pertinent litera-
ture and a detailed description of the theoretical formulation. However,
missing from Ref. 4 are the discussions of the works on the linear dynamic
analysis of shells of revolution by Klein and Sylvester19 and Popov and
Chow.* Klein and Sylvester use the method of Chan, Cox and Benfield20 to
solve the equations of equilibrium whereas Popov and Chow use the modal
analysis. The results obtained by both methods which are presented in
Ref. 19 are in good agreement for a spherical cap under a step pressure
loading. This same problem is analyzed herein and the results are pre-
sented in a later section.

In the earlier stages of the research presented herein, the method
of Ref. 20 was used for solutions. 1In fact, a technical note21 has been
published on the axisymmetric dynamic buckling of shallow caps under step
pressure loading in which the method of Ref. 20 is used to solve the equa-
tions of equilibrium. However, more recent studies have shown that Houbolt's
method22 is more stable and thereby more efficient than the method of
Ref. 20 for solving highly nonlinear problems. Consequently, most of the

results presented in this report are based on Houbolt's method of solution.

*Presented as Addendum in Reference 19.




FORMULATION OF PROBLEM

General Development

The purpose of this section is to present a concise formulation of

the problem, omitting most of the detailed discussion, but enabling the

reader to obtain a basic knowledge of the overall problem. Detailed

derivations are presented in later sections.

The nonlinear dynamic and thermal analysis of shells of revolution

may be simplified by employing the static analysis and extending it to

include dynamic and thermal effects,

The equations of equilibrium for the static case are of the form

oU
K"1{q™} = {Q"} - { -—3%5 (1)

L

and inclusion of the inertia and thermal terms yields the equations of

motion as

where

D1+ K1G") = Q) + Q) - {

(M]
G™
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1

aut

aU
iy

(2)
3q aq

symmetric mass matrix for harmonic n

column matrix of generalized accelerations for
harmonic n

symmetric stiffness matrix for harmonic n

column matrix of generalized displacements for
harmonic n




{Qn} = column matrix of generdlized forces for harmonic n
{Qz} = column matrix of linear thermal pseudo loads for har-
monic n
BUNL
{ a } = column matrix of generalized pseudo forces due to non-
0q linearities
AUy,
{—=} = column matrix of thermal pseudo loads due to nonlinear
aq terms in expressions for midsurface strains

The second and fourth terms of the right-hand side of Eg. 2 result

from considering the strain energy expression as

t t
= — + -_—
U UL UL UNL UNL (3)
where
UL = strain energy using linear theory
UE = strain energy which accounts for thermal effects using
linear theory

UNL = strain energy due to addition of nonlinear terms in

midsurface strains

U_.. = strain energy which accounts for thermal effects re-
sulting from nonlinear terms in midsurface strains

The element mass matrix has been derived using energy principles
and includes the effects of rotary inertia. The element stiffness matrix
is obtained from the expression for UL. Both matrices are computed in
the first part of the computer code called DYNASOR I (szamic gpnlinear
Analysis of Shells Of Revolution) which generates mass and stiffness ma-
trices and geometric properties and writes them on tape for input to the

second part of the code, DYNASOR II.




n . . .
The term {Q } represents generalized forces arising from mechanical
loads and is evaluated by considering the work potential due to external

forces to be the same as in linear theory and following the procedure

aut
outlined in Ref. 4. The term {Qz} is evaluated exactly from — .
3q

A detailed discussion of the computation of the thermal loads is pre-
sented in a later section.
BUNL

The term {EEE—} which represents the generalized pseudo forces due
to nonlinearities is obtained by retaining strain energy terms contain-
ing the rotations raised to the fourth power. The evaluation is performed
by using linear functions for all displacements and strip integration over
the length of the element, whereas integrals in the circumferential direc-
tion are evaluated exactly. This and the fact that the meridional and
normal displacements are represented by only a Fourier cosine series and
the tangential displacements by a sine series in the circumferential
angle 6, make the procedure different from the one employed in the static
case which is described in Ref. 4., The application of boundary conditions
to the zero harmonic has also been modified for the case of a closed shell.
In this instance the radial displacement and angular rotation at the apex
in the zero harmonic are specified as being zero in the initial information
to DYNASOR II. This is a known boundary condition and is specified to as-
sure better numerical stability for the highly nonlinear problems. This
new formulation permits accurate results and circumvents the problem of
having to resort to secondary storage on the computer. The code for the
IBM 360/65 presently allows the solution of a problem requiring five Fourier

harmonics which may be selected from a set of twenty and it may be extended

to include ten without encountering storage difficulties on computers




such as the CDC 6600 where double precision is not needed. The zero
harmonic must be included in the set.

Several methods for numerically integrating the equations of motion
were investigated and Houbolt's method was found to be the best. This
method permits use of a reasonable time increment without encountering
numerical instability. If a particular time increment is found to be
numerically unstable, a restart option of the computer code allows the
program to be restarted from a certain time with a reduced interval of
time.

Considerable time has been devoted to optimizing the computer
operations in the various subroutines and the net result is a computer
code that yields accurate results to complex problems in short periods
of time. Few problems require more than 30 minutes of time on the IBM

360/65 computer,

Mass Matrix
The element mass matrix, which includes the effects of rotary in-
ertia, may be obtained by considering the expression for the kinetic

energy

T=%— ! (62+x}2+v}2) dm : (4)




where the velocities, u,

e

e

<

and

>

13

>

23

and

dm

v, and w, are given by

0
uo + =z el3
v0 + 2z e23

ow
.4 .0 '
T dt (38 t e uO)
ow

=4 1 0 _
=@ I GGg - Vo cos 9]
= I (&1 + 6is + dlsz + &153) cos i®

oo 1T %5 T 4
= I (&; + dzs) cos i@

i=0
= 5 @Y+ als) sin 10

i=0 /8

differential mass element

Fourier expansion - must include 1

integer corresponding to terms being used

(5)

(6)

in

0.

The sum is over the total number of har-

monics used.
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Substituting Eqs. 5 and 6 into Eq. 4, the kinetic energy may be ex-
pressed as a quadratic form in the generalized velocity coefficients,

& , as
n

N |-

T =% & [M] (&) (7

The {&} matrix is related to the velocities of the generalized structural

coordinates, {q}, by the transformation
{a} = [A] {q} (8)

The matrix [A] is given in Ref. 4 and the elements of [ﬁ] are
listed in the Appendix A.

When rotary inertia is included, the element mass matrix becomes a
function of the harmonic number and a different element mass matrix must
be calculated for each Fourier harmonic. This computation is carried
out by first expressing the kinetic energy in terms of the generalized
velocity coefficients, &n, and then employing the same congruent trans-—
formation used for element stiffness matrices. 1In this manner, the ele-

ment mass matrix may be expressed as
[M°] = [A]'[M][A] (9)

This calculation, along with the computation of element stiffness
matrices and geometric properties, is performed in the first part of the

computer code, DYNASOR I.
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Nonlinear Terms

Two major changes in the treatment of the forces due to nonlineari-
ties have been made over that presented in Ref. 4. These are:

1. The fourth order terms in the strain energy expression are re-
tained. It has been found during the course of this investigation that
the retention of the fourth order terms is absolutely essential for all
problems where the nonlinear terms are substantial. For example, as re-
ported in Ref. 21, for a shallow shell parameter of 7.5, the ratio of
the dynamic buckling load to the classical static buckling load changes
from .38 to .50 when the fourth order terms are included.

The significance of the fourth order terms in the static solution of
cap-torus~cylinder configurations under symmetric and asymmetrical loads
is illustrated in Figs. 1-5. These results are for the same problems
presented in Ref. 4 and, after including the fourth order terms, agree
exactly with the results presented by Bushnell.23 All the copies of the
computer program for the nonlinear static analysis released by Texas A&M
University include the fourth order terms.

2. The generalized forces due to nonlinearities are evaluated using
linear displacement functions in all variables and strip integration over
the length of the element. The integrals around the circumference are
evaluated in closed form for the particular harmonics chosen, This simpli-
fication over that presented in Ref. 4 permits the forces due to nonlineari-
ties to be evaluated without the use of auxilary computer storage. The
purpose of the remainder of this section is to discuss the nature of the
approximation and present the details of the derivation.

The strain energy of an element due to nonlinearities in the strain-

displacement relation, including the fourth order terms, is given by
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a2 A A2 A A2 A A2
= 1 .
Uy, = % J7 G2 815 + Coegeny + v oCi(e ey + Sgel)
* " “ 1 1,‘4 1 "4
* 26185981383 % Crop3 4 Cyeyg (10)
1
+ (s v, Ct G ) e13 23] rdsdé
where és, ég, and 856 are the expressions for the meridional, cir-
cumferential, and shear strain based on linear
theory.
A A
€13 and €5q are rotations about the circumferential and
meridional coordinates, respectively.
Cl’ C2’ Gl’ and \56 are material constants.

s and § are meridional and circumferential coordinates
as shown in Fig. 6
The generalized forces due to the nonlinearities are given by

?U
——Eé-where m is the degree of freedom for the element (Fig. 6) and n

qu

is the harmonic number. Applying the operation to the strain energy

yields
A
30 30
NL _ 2y s
ook IS L(ce 13 + vgCi859) —
3q aq
m m
Bg de
A2 A2 ) __sb6
+ (Cyeyy TvC1015) —4 2G1613 23 Tan (11)
3q 3
m
a/\
e
+ (2C.e e, +2v C.e é.. + 2G,6 o 13

1%:°13 5601%°%13 T 2618:0%23) —3
qm




A 3“523
a A i~ #
+ (20,8, 8,5 + 2V (€18 &) + 2618 (8 3) — =}
oq
m
5é
A2 13
1 .
t% [0 L [ce 13 + (vgg Cp + 267) 2y4e55] 2
A
oe
A3 23
+ [02 23 + (‘Ee c1 + 2G ) 13 23] aq“ } rdeds
m

13

rdsdb

(11)

In this research, only the cosine terms for u and w and the sine

terms for v are retained in the expansion. Thus, substituting Eqs. 19

of Ref. 4, using strip integration over the meridional length,

s, and

evaluating the trigonometric integrals around the circumference, the

forces on the element due to nonlinearities become

ou r L ijn 1 . ijn .
_NL _ m o] i ]
n I3 L (C egeist vy O eyyeyy
3q i=0 j=0
m
iin ijn del ijn
i J i i )
+ (Cyepgepgt Vo Cpeggeiy) —+2 Ge
aq
m
ijn . ijn ., . i}n
i ] 1 ] i
+ (2 Cl eS el + 2\)Se Cl ey €3 + 2 Gl eg ©
ijn . . iin . . ijin
i i ] i
+ (2 C2 ey €54 + 2\)Se Cl e e23 + 2 G1 e o e

n
S
) n
qm
n
i j aese
13 723 n
oq
(12)
n
i . %823
23 n
. aqm
I
5. %93 )
13 aqn
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rmL ijkn i i Kk
+ —— I p r { ¢ e e e
2 i=0 §=0 k=0 1 13 713 713
iJkn 13kn se™
i i k 13 \
Ty G F2 G ) ejgepy ey ]l — (12)
m
ijkn ijkn 1 jkn el
i j k i i k 23
1 Gy epgepzeny T (Vg G +2 6 ) ejgejgey ]l —=1
aq
m
where rm = value of r at middle of element
L = length of element
e’ = coefficient of sin i6 or cos i6 in the expressions for the
strains and rotations for harmonic i at the middle of the

element
The superscripts over the material constants, Cl’ C2’ G1 indicate that

the material constant is multiplied by the integral of the trigonometfic

functions. For example,

27
C., =2¢ I cosi® cosjdb cosk® cosnb d6 (13)

A bar over i, j, k, or n indicates that cos6 is replaced by sin® in the
integral. The strains and rotations are evaluated at the center of the
element.

The evaluation of the strains at the center of the element and con-
sequently, their partial derivatives with respect to the generalized co-

ordinates presented a difficulty. For example, the rotation e, , may be

13

approximated in alternate forms as
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. q q
i _ 4+ 78
©13 7 T 32 (14)
i i, i i,
o ei ] q7cos¢L - q551n¢L - q3cos¢o + q131n¢0
13 ‘ L
(15)
i, i i, i
. (q751n<bL + qscos¢L + q331n¢0 + qlcos¢0) o
2 m

where subscripts o, L, and m refer to the term evaluated at s = 0, s = L,

and s = %~respectively. The superscript refers to the ith harmonic.

While little difference will be observed in the evaluation of e13 between

the two alternate forms, the partial derivatives are completely different.
Both methods were used at the beginning of this research and a considerable
difference was observed in the results.

To resolve the difficulty of which form to use, the following was
considered. The strain energy expression U__ depends only on first de-

NL

rivatives. Consequently in the evaluation of L? it is necessary to satis-

U
fy only continuity of displacements between elements and not continuity of
slopes.24 This allows the use of linear displacement functions in s for w
as well as u and v. Using linear displacement functions for all the vari-
ables, it is the second form, given by Eq. 15, for 3 which is obtained
and used in this research.
The following expressions are used for the strains and rotations
o q?sin¢L + qécosd)t - qisin¢0 - qicos¢o
s

i i, i i,
) (q7cosq5L - q531n¢L + q3cos¢o - qls1n¢o) o
2 m
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i i
4oL, R2T%
8 r 2
i, i i, i
( q751n¢L + q5c0s¢>L + q351n¢0 + qlcos¢0 ) sing
2 m
-i i. i i.
. q7cos¢L q531n¢L + q3cos¢o q151n¢0 ) coss ]
2 m
i, i i, i
ei ) é;.[ i q751n¢L + q5cos¢L + q331n¢O + qlcos¢o )
sb r 2
i i i i
q2+q q6—q2
_———-é-r—n:—slnd)m'i' L ] (16)
i
&3 = Eq. 15
i i, i i.
ei _ ;;_[ _ i q7cos¢L - q581n¢L + q3cos¢o - q151n¢0 )
23 o . 2
q, t q
2 6
- 5 cos¢m ]

Equations 16 were obtained from Eqs. 8 of Ref. 4 by using linear displace-
ment functions, applying a coordinate rotation to u and w, and evaluating
the results at the middle of the element.

The calculation procedure within the computer code consists of
evaluating the partial derivatives of the strains and rotations with
respect to each and every qi and then evaluating the strains and rotations

as the sum of their partial derivatives with respect to the generalized
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coordinates times the generalized coordinates. These partial derivatives,
strains, and rotations are used in the evaluation of Eq. 12, the stress
resultant routine, and in the evaluation of the nonlinear thermal terms.
In Eq. 12, the fourth order terms yield a triple sum over the num-
ber of harmonics. Fortunately, most of the integrals around the circum-
ference of the shell are zero and may be omitted in the calculation.
In summary, due to the exact evaluation of the integrals in the
circumferential direction it is reasonable to expect rapid convergence
as the number of harmonics is increased. It will be demonstrated through
a numerical example in a later section that the use of strip integration
over the length of the element produces convergence quite rapidly as

the number of elements is increased.

Thermal Terms

This section describes the derivations of the linear and nonlinear
thermal loads. The thermal loads are evaluated for each element and then

combined at the nodes for the entire structure.

Temperature Distribution

The temperature distributions at the midsurface, T, and the tem-
perature gradients in the normal direction, T', for an element are ex-
panded in a Fourier series in a manner similar to that used for the dis-

placement functions. The expressions may be written as
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(17)

T' = I T''cos if
i=0
where Ti and T'i are the corresponding Fourier coefficients. The same
Fourier harmonics used for the displacements are used for the temperature.
The temperature, T, for an element is assumed to be constant over
each element in the meridional direction and have a step variation in
the circumferential angle, 6. The variation is taken to be constant

over an angle varying from ej to 6, Thus the Fourier coefficients

j+1°

T" are given by

o 1
™ = ig'i T (O - ej)
(18)
= L3 1 (sin 16, - sin i6.) , i >0
™y sin 8 Yy o

Similar expressions are obtained for the Fourier coefficients in-
volving temperature gradients.

In cases where the step variation in the circumferential direction
is not considered accurate enough, the Fourier coefficients may be speci-

fied as initial information.

Thermal Strain Energy

The thermal strain energy ut is given by
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. _ v
v = s Lef] bl {E} av (19)
v
where
c € : aST + aST'z
{e "} = ¢ o= 1 }
'
ee aeT + aeT z
E v E
D] = — 3. s sb s (20)
s8@ Os v E
6s 0 0
€ & +Kz+y &
s s s 2713
{e}={ } o= { 2}
- A 1/1'\
€ 6 ey + Kez + > e23
: » . A ~ ~ A
The linear strains and rotations, €s €55 €135 €5qs and the changes

in curvature, KS, K, are given in Ref. 4,

8
Substituting L_EEJ , [D] and { e} into Eq. 19 allows the thermal strain

energy to be separated into two parts:

t

_ .t t
U = UL + UNL (21)

where UE is the thermal strain energy due to the linear strain-dis-
placement relations and U§L is the thermal strain energy due to non-

linearities in the strain-displacement relations. The linear and non-

linear thermal strain energy expressions are given by
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t _ N -
UL = [ [ [Cl(aS + \geae) T e, + Cz(a6 + \bsas) T €,

t !’
+ Dl(as + ”se“e) T Ks + DZ(GB + “es“s) T Ke] rdsde (22)

and

€ _ . 2 | 2
UNL s [ [Cl(aS + \%eae) T €3 + Cz(oce + \@Sas) T e23] rdsd® (23)

where oy and a, are the coefficients of thermal expansion in the meridio-

nal and circumferential directions, respectively.

Thermal Loads due to Linear Strain Theory
For an element, the linear thermal loads for harmonic n may be
written as a column matrix

"
{Qt} ={ —1} (24)

n
9q
and, using chain rule differentiation, may be converted to the partial

derivatives with respect to the generalized coefficients, o, through the

relation {a} = [A] {q} as given in Ref. 4. Thus,

t t
U oU.
L , L
{ T } = [A]' { —-H'} (25)

3q da
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The problem reduces to the evaluation of the partial derivatives of

Ut with respect to thecocefficients, o

L These partial deriva-

see g

tives are obtained from Eqs. 22 of this paper and Eqs. 19 of Ref. 4.

1 %2

For i = 0
auﬁo . %e?
o = 27 Cl(us + \geue) T f - rds
aa 0,
m m
, o
+ Cz(ae + \@Sas) T — rds
20,
m
. aK®
! -
+ Dl(aS + \geae) T J p rds
: 20,
m
o K
‘ s ——
+ Dz(oce + \@sas) T i) 5 rds ] (26)
90,
m
For i > 0
BUﬁl i Be:
= 7 Cl(aS + \geue) T i -5 rds
o0 a0,
m m
i Beg
+ C2(a6 + \bsas) ™ f - rds
aq,
™
Lo
' PR —
+ Dl(ocS + \geae) T S 7 rds
o0
o
1 _
. + DZ(a6'+ \geas) T J aai rds ]

=]
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The elements of {Q:} are listed in Appendix B.

Nonlinear Thermal Loads

The nonlinear thermal loads may be treated in the same manner as the
generalized forces due to nonlinearities. The nonlinear thermal loads can
be evaluated from the partial derivatives of U&L with respect to the gener-
alized displacements, 99> q2""'q8'

aut 56
aqu = S L Cag ¥ v a) T ép, 3q13
m
(27)
. %
+ Cz(ae + \bsas) T €53 aqn ] rdsdb
m

where n harmonic number

]

m 1,2,...8.
With the same approximation as used in the evaluation of the generalized

forces due to nonlinearities, the linear strain expressions are substituted

in Eq. 27 and rearranged to yield

t n
au .. . oe
NL _ rL I T [ ctin (o + v .a.) T et 13
n , . 1 676 i3 n
aqm i=0 j=0 2q
(28)
n
-.- . . de
ijn j i 23
+ C2 (a6 + \@sas) T g ;;E—_]
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where
Tj = Fourier coefficients of temperature at time t
The rotations and their derivatives with respect to the generalized
displacements in Eq. 28 are evaluated approximately by using the finite
difference relations described in the previous section (Equation 16).
The thermal effects have been incorporated into the computer program
and checked for simple cases. However, a thorough evaluation of the ther-

mal effects through numerical examples remains to be done.

Stress Resultants

In this research, the stress resultants were determined by the use
of the assumed displacement functions and finite difference relations at
the mid~-point of each element.

The stress resultants for orthotropic shells are given by Ref. 4 as

R -7 pr—— — ot —
NS C1 \gecl 0 0 0 0 €4
Ne \@SCZ C2 0 0 0 0 €4
N =10 0 G 0 0 0 €
s6 1 s6 (29)
4 \ < >
MS 0 0 0 Dl seDl 0 Ks
Me 0 0 0 \)SSD2 D2 0 Ke
LMSe 0 0 0 0 0 G2 KS6
R e o T
where N, N ,N = gtress resultants
s 6 s6
MS, Me, Mse = moment resultants B




The strains and curvatures in Eq.

of the elements and given by

= A 1 ,‘\2 - t
& es + oz e13 es
- N 1~ 2 - t
€6 e6 + 3 e13 ee

_A +AA
%0 = %so T ©13%23
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29 are evaluated at the centers

A
de (30)
K = - —23 _ gt
s Js s
e
_ 1 23 A . _ ot
Ke = - [ —56—-+ i3 sing ] Ke
A A
o153 sinea 22
s6 r 96 r 23 9s

where et et t
s’ 79’

thermal loads, and given by

et = o I Tl cos 16
s s |
i=0
et = o, & Tl cos 16
6 0
i=0
t ' .
K = o T cos 16
s s
i=0
KE = o 2 T'' cos i
6 0

t R :
KS and Ke are the strains and changes in curvature due to

(31)
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In the computer code, the partial derivatives of the rotations with
respect to s are evaluated approximately by using finite difference re-
lations. Using finite difference relations, the changes in curvature are

evaluated as

K = Z k1 cos 18
s . ]
i=0
K. = I k. cos if
8 . ]
i=0
Kse = k 6 sin i6
i=0
= (32)
Gt g ool
s L
i _ 1 (.1 i _ i
ke = [1e23 + el3 sing | ueT
ol N R - 1
k- -1 [iel + sing er. + 1 7 %3 - g b +q3
s6 13 m 23 L r 2
i i, i
q _qz , cosé q6+q2
+ cos¢m T (¢m + ” ) sing 2 ]
m
where 571 = - q; sin¢L + q; cos¢>L
- i i, i
q3 = - ql sln¢o + q3 coscpo
g1 =%

ds
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The shear resultants are determined approximately from the equations

of equilibrium of the undeformed shell as

oM

-1 9 s6 _ :
Qs T [as (rMS) + os Me sing]
1.9 . oM, 33)
Qp = T [3g (M) + 55—+ M, sing)

These shear resultants at the nodes are obtained by using the finite

difference relations except for the first and last nodes as

M (D) BMse(J—l)

_ 1 _};_ _ _ _ 1 s6
QS(J) = ;;; {Lav [rm(J) MS(J) rm(J 1) ME(J 1) + 5[ =5 + =5
sin¢av
- "_37__'{M6(J) + Mé(J) + MB(J—I)]}
1 1 ' . BMe(J) BMG(J—l)
Qe(J) = ;;;-{E;;-[rm(J) Mse(J) - rm(J—l) Mée(J)] + %[ 56— T 58 ]
sin¢av
+ ———2-———-[Mse (3 + Mse(J—l)]} (34)

1 -
where L. z[rm(J) + rm(J D]

Ly~ 5[L(3) + L@3-1)]

0,y = %o (D + ¢ (3-1)

J = 2,3,...number of element
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METHODS OF SOLUTION

The numerical methods of solution which have been used in DYNASOR II
to calculate the nodal displacements of the shells under study are dis-
cussed in this section. Three independent methods have been utilized
with one of the methods being varied to provide a total of five different
numerical solution schemes. The formulation of these methods for use
in solving the shell equations is presented and the results obtained
using each method are discussed. Additional methods of solution are
to be evaluated and the results presented in Ref. 25.

The equations of motion, Eq. 2, can be reduced to a system of

equations of the form
Ml {q} + [K] {q} = {F(t,q)} (35)

The load matrix, {F(t,q)}, is equivalent to the right-hand side of Eq. 2.
The numerical schemes discussed are formulated to satisfy these governing
differential equations of motion.

Since a closed-form solution of Eq. 35 is generally not available,
a numerical method must be used to determine the response of the shell.
The numerical methods employed calculate the displacements for any time,
t, increment the time by an amount At, and then solve for the displace-
ments at the new time, t + At. This step-by-step calculation of the
displacements must be performed for a large number of time increments
in order to determine the response characteristics of the shell of

revolution.
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In order to start the numerical solution of Eq. 35, the initial dis-
placements and velocities of the nodes of the shell must be known. These

initial conditions are specified in the form

L
]

{q}O

and (36)

.

{q}O

0
i

Although a few of the numerical methods of solution use the same procedure
for calculating the response at each time step, most solution schemes re-
quire the development of special procedures for calculating the displace~-
ments at the end of the initial step. The method of starting each of the
solution schemes is presented.

The accuracy and stability of the numerical solution schemes as well
as the computer time required to obtain the responses are investigated.
An efficient scheme should provide a solution which remains numerically
stable for large time increments. The scheme should also be able to de~
termine accurately the response characteristics of the shell without the
expenditure of large amounts of computer time. The relative amounts of
computer storage space required by the various numerical schemes are also
discussed. The accuracies inherent in the different methods are presented
and the effect of truncation errors upon the value of the displacements is
discussed.

Levy and Kroll,26 investigated both the accuracy and convergence of
numerical integration methods. These methods were used to determine the
dynamic responses of single-degree-of-freedom and multi-degree-of-freedom

structures to impact loads. A central difference pattern was used to replace
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the acceleration term in the equations of motion and Houbolt's method of
solution was applied. It was concluded that the Houbolt method was the
only method tested which gave convergent results for large time increments
but that errors introduced by using these large time steps caused a damp-
ing out of the system response. It was also concluded that "all the meth-
ods give good results when the time increment is less that about 1/30 of
the period of the highest frequency mode."

Using a finite difference formulation, Johnson and Greif27 have pre-
sented the results of linear dynamic response studies of cylindrical shells.
These results were obtained by the direct application of two different
methods of timewise numerical integration. An explicit method and an im-
plicit (Houbolt) method are used with the relative merits of each method
being discussed. TFor the explicit solution, a central difference expres-
sion is used to approximate the accelerations of the mesh points. The time
increment used in the explicit solution must be chosen small enough to in-
sure the numerical stability of the solution. Stability criteria based
upon physical considerations are developed and used to evaluate the cri-
tical ratio of the time and spatial increments. A damping effect upon out-
put quantities was noted for solutions using Houbolt's method with large
time increments. It was reported that ''the time increment has to be smal-
ler than about 1/50th of the period of a particular mode of vibration in
order that important output quantities in that particular mode not be sig-
nificantly damped." It is warned that unless that criterion is adhered
to, the Houbolt method will have a tendency to damp out the motion of the

higher modes of vibration. The explicit method did not exhibit this damping
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phenomenon. Both methods were shown to give the same results. After
considering the relative efficiencies of both methods measured in terms

of the amount of computer time necessary for the accurate solution of

a given problem, it was concluded that the eiplicit method is more effi-
cient for determining rapidly varying responses, but for the determination
of slower responses the Houbolt scheme becomes more efficient.

A finite difference formulation for the nonlinear dynamic response
of thin-shell structures has been presented by Wrenn, Sobel and Silsby.ll
Three numerical methods are used to solve the equations of motion of the
system and the stability and convergence of each method is examined. An
explicit finite difference expression, the same expression as that used
by Johnson and Greif, is used to represent the accelerations of the mesh
points. In addition, two numerical integration schemes, the Runge-Kutta
method and the Adams-Moulton predictor-corrector method, are examined.
The conclusion is reached that, '"In most cases, the 'critical time step'
is so small that the larger truncation error of the finite difference
method does not create a serious accuracy problem." Thus, it is concluded
that the critical time increment for stability, not the truncation error,
is a governing factor in the finite difference procedure. Several pro-
cedures for determining this "critical time step' are presented and dis-
cussed. Based upon work with a right circular cylinder, Wrenn, Sobel and
Silsby also conclude that, of the three methods tested, the explicit

finite difference procedure is the most efficient.
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Houbolt's Method

The finite difference method of solution developed by Houbolt22 for
use in dynamic structural response studies of aircraft can be adapted for
use in determining the dynamic nonlinear response of shells of revolution.
The accelerations in Eq. 35 are replaced by a finite difference approxi-
mation of the second derivative. This substitution allows development of
recurrence relations which can be used for the step-by-step calculation
of the displacements of the shell.

The accelerations of the nodes of the shell are approximated by the

third order backwards difference expression

. 1
{q } - 2 {zqn+l Sqn + 4q.n_]_ - qn_z} (37)

The accuracy of this representation is of the order (At)z.

Substituting Eq. 37 into Eq. 35 and simplifying yields

@il + OOXKD o, ) = GOPF(E,Q )+ 1 {5 - 4o +aq_,)
(38)

This equation is valid for all time increments but must be modified for
the first step since the values of {q_z} and'{q_l} are not known. This
occurrence is common when solving initial value problems by finite differ-
ence procedure and merely requires that a method be developed to start

the soltuion. Equation 38 will, however, be used to calculate the dis-
placements for all time increments except the first.

To start the solution, assume
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(4.} = = (2q; + 3q - 6a_; + q_,} (39)
and
(3) =—L5 fqy - 20+ q_;) (40)
) (at) o

The initial accelerations are obtained using Eq. 35 evaluated at t = 0

which gives
M] {q_} = {F(0,q )} - [K] {q_} (41)
Rearranging Eq. 40 gives

fa_y} = 0% {4} + {2q - q} (42)

By combining Eqs. 39 and 42 an expression for {q_z} is developed
_ 2 . . _
{q_z} = 6(At) {qo} + 6(At) {qo} + 9{q0} 8{ql} (43)

Substituting Eqs. 42 and 43 into Eq. 38 for the first time increment
(n=0) and approximating the forces at the end of the first time step
by the forces at time, t = 0, provides an expression in terms of the
initial displacements, velocities and accelerations which can be solved

to get {ql}
60 + (6% [KD) {q;} = A0 (F(0,q )1+ M) {2000)%G + 68td_ + 6q,)

This equation is used to determine the displacement at the end of the first
time step. Using Eq. 42, a fictitious matrix of displacements, {q_l} can
be determined. The displacements are then available so Eq. 38 can be used

for each subsequent time step.

(44)




.33

Chan, Cox and Benfield Method

Chan, Cox, and Benfield 20 developed a numerical method of solution
which can be applied to multi-degree-of-freedom structures subjected to
dynamic loads. A recurrence matrix of finite differences is derived
which can be used for the step-by-step calculation of the dynamic re-
sponse of the idealized structures. The method is actually a special
case of the more general procedure presented by Newmark.28

The numerical solution of the differential equations of motion for

the dynamic system is accomplished by replacing the derivatives by the

following finite difference equivalents

. e At v
{qn+l} - {qn} + 2 {qn+l + qn}

and (45)

. 2. - 2. e
{qn+l} = {qn} + At{qn} + (3 - 8) (at) {qn} + B (at) {qn+l}

The parameter of generalized acceleration, B, expresses the accelera-
tion within a time interval in terms of the initial and final accelerations
of the interval. As reported in Ref. 20, '"the value of B can be anywhere
between O and 1/4" with the choice of this parameter depending upon ''the
physical characteristics of the system, accuracy desired, and certain
limits of application.”

Setting the value of 8 equal to 1/4 corresponds to using trapezoidal
integration formulas to determine both the displacements and velocities
of the system. The trapezoidal integration procedure is consistent with
the assumption that a comstant acceleration, equal to the mean value of
the initial and final accelerations of the increment, exists within the

interval.
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By applying Simpson's one-third rule to integrate the accelerations
and the trapezoidal formulas to integrate the velocities, the equation
corresponding to B = 1/6 can be derived. This expression is consistent
with assuming a linear variation of the acceleration within each step.

The Chan, Cox, and Benfield solution corresponds to a second order
central difference pattern when the value of the generalized accelera-
tion parameter, f, is zero.

Eliminating the matrix of damping coefficients from the equations
in Ref. 20 the displacements for the (n+l)th time step can be calculated

from the expression

_ 20 4 &
[A] {a ) = [B] (q ) - [A] (q ;) + BUO*F  + (7= DF +F 1 (46)

where

M] + 8(at)? [K]

[A]

[B] = 2[M] - (1-28) (At)2[K]

[]

Equation 46 is used to calculate the displacements at the end of each in-
crement except the first one.

Since Eq. 46 requires the knowledge of the displacements at the end
of two previous time steps, a special procedure must be used to calculate
the displacements at the end of the first increment. Again, by simplify-
ing the equations of Ref. 20 the equations to calculate the displacements

at the end of the first increment become

[A] {ay} = [C] faj} + se[M] {&)} + B {F(e ,q)) + )00 *(F(o,q )

where (47)

[C]=[M] - CB)(ot)? [K].
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Runge-Kutta Method

For the special second-order system of differential equations where
the accelerations are not a function of the velocities of the system, we

have
{q} = 6(t,q) (48)
These accelerations are calculated using Eq. 35. For this system of

equations the general fourth-order forward integration Runge-Kutta for-

mulas taken from Hildebrand29 reduce to

_ . At 5
{qn+l} = {qn} + At{qn} + 2 {mo +my + m2} + 0(AET) (49)
(4 1 =14 ) +Sm +2m + 2m, +m.} + 0(ALD) (50)
n+l 9 6' Mo 1 2 3
where
{m}o = At G(tn, {qn})
- At At .
{m}l = At G(tn + 7 {qn + > qn})
(51)
- At At . At
{m}2 = At G(tn + = {qn + > 4+ . mo})
{m} = At G(t + At, { + Atq + éE-m b
m 3 n > 14y qn 21

The Runge-Kutta method of solution offers many advantages (Ref. 29)
over other numerical schemes:
1. The formulas are the same for each stage of the calculation and
do not require any special starting procedures for the first

increments.
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2. The spacing may be changed at any interval during the solution
since this method does not require information from previous
stages.

3. Runge-Kutta methods can be used to obtain accurate results
[the truncation error in a fourth-order Runge-Kutta solution
is of order (At)s].

An inherent disadvantage of this method is that for each stage of the
advancing calculation, four calculations of the accelerations are nec~
essary. In order to be competitive with other'numerical solution rou~
tines the critical time increment for the Runge-Kutta method must there-
fore be substantially larger (preferably by a factor of at least 4) than

the step allowed by other methods.

Approximation of Loads Matrix

Both the method of Houbolt and the Chan, Cox, and Benfield method
require that the loads at the end of the nth time increment be known in
order to calculate the displacements at the end of that increment. These
loads, because of the presence of the nonlinear terms, are a function of
the displacements which are to be calculated. It is therefore not possi-
ble to evaluate these terms exactly.

Consequently, the right-hand side of Eq. 35 will be evaluated using

a first order Taylor's series expanded about the nth time increment.

(F(t,)_, ) = (F(t,@) } + (o= (F(t,)_} At + 0(at)” (52)

Approximating the partial derivative by a first order backwards difference

expression gives
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{F(t,q) 4} = 2{F(t,q) } - {F(t,@) 4} ‘ (53)

This expression has an inherent error of order (At)2 which is the same
as the order of accuracy inherent in both the Houbolt and the Chan, Cox,
and Benfield solutions. It corresponds to a linear extrapolation of the
loads at the two previous time increments.

Using a second order expression the loads may be approximated to an

accuracy of order (At)3 by

{F(tyq )} = 3{F(t,q )} - 3{F(t,q )} + {F(t,q _,)} (54)

It is assumed when using this expression that by passing a parabola through
the loads at the three previous time increments the loads for the nth time

increment can be determined.

Numerical Results

The results obtained using the various methods of solution are eval-
uated to determine the method of solution most advantageous for the
DYNASOR II program. The numerical stability of each method is investigated
and an extremely thorough test of the Houbolt solution scheme is made after

concluding that this seems to be the most promising method of solution.

Runge-Kutta Evaluation

A shallow spherical cap with clamped edges was analyzed using the
Runge~Kutta method of solution. The cap was subjected to an instanta-
neously applied (at time = Q) internal pressure of 70 psi. Only the
zero harmonic response was determined. Thirty elements were used giving

a total of 124 degrees of freedom.
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Linear solutions of the problem were numerically unstable for time

6, 1.0 x 10_6, and 0.5 x lO”6 seconds., This

increments of 2.0 x 10
instability consistently occurred after only a few time steps had been
taken. The time increment was further reduced to the very small value

of 0.5 x 10~8 seconds and the solution obtained did not exhibit any
numerical instability. Utilizing this extremely small time increment
would require prohibitive amounts of computer time to determine the
response of a shell.

Since for an initial value problem, the accuracy of the displacements
of the initial steps greatly affects the numerical stability of the solu-
tion, a smaller time increment used during the initial steps can possibly
improve the stability of the solution. DYNASOR II was modified to use an
increment over the initial steps which was several times smaller than the
input step size. After completing these initial steps, the input time
increment was used for the remaining steps. This approach did provide
additional stability by increasing the allowable time step to 0.5 x 10‘7
seconds. It is presumed that the critical time increment would have been
decreased by the inclusion of the nonlinear terms.

From these results, it can be concluded that the advantages afforded
by the simplicities of application and the accuracy of the Runge-Kutta
method are more than offset by the small critical time increment which
is required when this method is applied to dynamic shell of revolution

problems. Utilizing this method of solution therefore requires unreason-

ably large amounts of computer time to determine the response of a shell.
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Chan, Cox, and Benfield Solution (8 = 1/6 and 8 = 0)

For a variety of problems, attempts were made to calculate the re-
sponse curves using both 8 = 0 and 8 = 1/6. A numerically stable solution
was never obtained using time steps as small as 0.1 x 1Q-6 seconds. The
results obtained using the Runge-Kutta solution suggest that by reducing
the time step even further a stable solution could possibly have been
obtained. These small time increments were not used since the amount of
computer time required to obtain a solution to a problem would render the

method impractical.

Houbolt Method vs. Chan, Cox, and Benfield Routine with B = 1/4

To determine the most advantageous numerical method of solution for
use in DYNASOR II, a comparison was made of the responses obtained using
the method of Chan, Cox, and Benfield (8 = 1/4) and Houbolt's method.
The shell selected to serve as a test problem for the two numerical
methods is shown in Fig. 7. This cap-torus-cylinder configuration was
subjected to a 50 psi internal pressure. The shell was idealized using
50 elements distributed so that a large number of elements were concen-
trated in the vicinity of the cap-torus intersection and near the torus-
cylinder intersection. With this element distribution, the size of the
elements varies extensively. The widely varying element sizes coupled
with the irregular shape of the shell provide a real and critical test
of the numerical methods.

Using the zero harmonic, the displacements and stresses are calcu-
lated utilizing both numerical methods with single-precision numerical

accuracy. By considering the results presented in Fig. 7, it can be
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concluded that the displacements calculated using both numerical methods
are almost identical. The stresses calculated at the cap-torus inter-—
section are presented in Figs. 8 and 9. Excellent agreement between the
values calculated by the two methods is once again noted.

Since the displacements and stresses calculated by both numerical
methods of solution are essentially the same, the choice of the most
advantageous method of solution can be made based upon economic consid-
erations. The largest time increment which can be used for this problem
by the Chan, Cox, and Benfield method is 1 x 10_6 second. Houbolt's
method of solution is, however, stable for a time increment of 3 x 10__6
seconds. Obviously, a tremendous saving of computer time can be realized
by using the numerical method of solution which utilizes the larger time
step. In addition, the amount of computation time required per step is
less for the Houbolt scheme than for the Chan, Cox, and Benfield routine,
This can be explained by comparing Eqs. 38 and 46. For each time step,
two matrix multiplications must be performed using the Chan, Cox, and
Benfield scheme but only one multiplication is necessitated by the
Houbolt procedure. This saving of computer time becomes increasingly
more important as the number of finite elements used is increased. The
combined effect of using the larger time step and decreasing the computer
time per step is to provide a solution of this problem almost four times
faster using Houbolt's method. For several of the analyses presented

in the application section, the same advantage was noted using Houbolt's

solution.
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By considering Eqs. 38 and 46 it can be seen that the amount of
computer storage space required for the Houbolt scheme is slightly
greater than the space required for the Chan, Cox, and Benfield procedure.
This results from the necessity of retaining the displacements at three
previous increments for Houbolt's solution. The Chan, Cox, and Benfield
procedure requires that the displacements at only two previous steps be
retained. This slight disadvantage of requiring additional storage space
is more than offset by the many advantages and benefits to be accrued by

using the Houbolt solution scheme.

Test Problem for Houbolt Solution Scheme

The problem selected to serve as a critical test of the Houbolt
method of solution is the shallow spherical cap (A = 6) with clamped
edges depicted in Fig. 10. The geometric and material properties pre-
sented at the top of this figure are used throughout the analysis. The
cap is excited by an instantaneously applied load which is concentrated
at the apex of the shell.

This particular problem was selected for two reasons. First, the
problem is highly nonlinear. The high degree of nonlinearity can be
established by looking at the static load-deflection curve (Fig. 10)
for this shell. The results were obtained by the method described in
Ref. 4 using the Newton-Raphson method of solution and are in agreement
with the results presented by Mescall30 and Bushnell.31 A forty pound

load was selected for use in the dynamic test case. For this loading,
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the displacements predicted by a nonlinear analysis are more than four
times larger than the displacements predicted by a linear analysis.
Hence, a highly nonlinear problem is to be solved.

Second, the singularity which exists at the apex of this shell gives
rise to extremely large terms in the structural stiffness matrix. The
corresponding terms in the mass matrix are rather small. The net effect
of a large stiffness to mass ratio is to give a speed of sound in the
element which is very large. Since some of the stability criteria de-
veloped in the finite difference approach (Ref. 11, 14, and 27) are based
upon the time required for a signal to travel from one mesh point to
another, applying these criteria to this problem results in the pre-
diction of an extremely small time increment. The same effect is pro-

duced by using very small elements.

Numerical Accuracy

The effect of using a greater degree of numerical accuracy in the
solution of this highly nonlinear problem was investigated. The DYNASOR
programs were used on an IBM 360/65 computer with both single-precision
(7 significant figures) and double-precision (16 significant figures)
numerical accuracy. A time increment of 0.125 x 10—6 seconds was used
with the shell being idealized by thirty finite elements.

A comparison of the single-precision and double-precision solutions
can be made by considering Fig.All. A slight decrease in both the
period and amplitude of the predicted motion is noticed in the single

precision results.
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The response curves for several shells in which the behavior is only
moderately nonlinear are discussed in the applications section. These
curves, obtained using single precision accuracy in the DYNASOR programs,
are shown to be in quite good agreement with the solutions to which they
are being compared. This implies that the double-precision accuracy is
necessary in the 360/65 system only for the analysis of shells which ex-
hibit highly nonlinear behavior. It is believed that if the DYNASOR pro-
grams are used on computers which have a longer word length than the

360/65 system double-precision accuracy will not be necessary.

Effect of Load Extrapolation Procedure

The effect of the accuracy of the ektrapolation procedure used to
determine the loads matrix in Eq. 35 was also investigated. Again, a
thirty element idealization of the shallow cap was used along with a time
increment of 0.125 x 10“6 seconds. By evaluating the results presented
in Fig. 12, it can be concluded that even for highly nonlinear problems,
there is almost no advantage accrued by using a parabolic rather than a
linear extrapolation procedure. For a time increment of 0.25 x 10—6 sec—
onds, the solution becéme numerically unstable using the cubic extrapo-
lation procedure but remained stable for the linear approximation.
Because of this added stability, it is concluded that a linear extrapola-
tion procedure can be effectively used to approximate the loads at the
nth time increment. Using this linear procedure rather than the parabolic
one reduces the amount of storage space required by the program and also
slightly reduces the run time required for a problem since fewer calcu-

lations have to be performed for each increment.
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Convergence with Improved Finite Element Idealization

As the finite element idealization of a shell is improved, the
displacements calculated using any acceptable method should converge.

To show that the solutions obtained using the Houbolt method in the
DYNASOR programs do converge, the shell depicted iﬁ Fig. 10 was ana-
lyzed using 15, 30 and 50 element representations. The element distri-
bution was chosen so that the elements were concentrated at the apex and
atAthe supports of the shell where the displacements and stresses vary
rapidly.

Since linear displacement functions are assumed for the variables
in the nonlinear strain energy expression and since strip integration
is used across the element, it would be expected that the convergence
of the solution by increasing the number of finite elements would be
rather slow. This is not the case, however, since a comparison of the
results presented in Fig. 13 shows that the response curves obtained
using the 30 and 50 element idealizations are practically identical but
that the solution has not completely converged for the 15 element rep-—
resentation. The response calculated for the 15 element representation
seems accurate enough for many engineering purposes since only the
period and not the amplitude of the motion appears changed.

Each element used in the representation of the shell increases the
size of the matrices which must be manipulated and hence increases, by
four, the number of equations to be solved for each time increment. This
results in a substantial increase in computation time per step. For the

zero harmonic the 50 element case required more than three times the
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amount of computer time necessary for the 15 element example (0.0067

minutes/step compared to 0.0021 minutes/step).

Effect of Time Increment Variation

Houbolt's method has been shown (Ref. 26 and 27) to exhibit a
damping phenomenon for large values of the time increment. It is nec-
essary, therefore, to show that the time increment used to obtain a
solution is small enough so that the damping inherent in the solution
scheme does not affect the calculated response. Using double-precision
accuracy and again employing a thirty element idealization of the cap,
the apex displacements that were calculated using two different time
increments (0.25 x 10—6 and 0.125 x 10—6 seconds) are presented in
Fig. 14. By considering this figure, it can be seen that the solution
has converged for a time increment as large as 0.25 x 10-—6 seconds. The
Houbolt solution, however, becomes numerically unstable with a time step
of 0.5 x 10—6 seconds because of the influence of the nonlinear terms.
The Chan, Cox, and Benfield solution (8 = 1/4) was numerically unstable
for a time step as small as 0.125 x 10“6 seconds. Hence, it is again
observed that the Houbolt solution scheme is numerically stable for
much larger time steps than can be used in the Chan, Cox, and Benfield
routine.

The response of the shell depicted in Fig. 10 subjected to a uni-
form external pressure is presented in the applications section. A
time step of 1 x 10~6 seconds was used to calculate this response.
Since the response to the pressure loading does not exhibit the high
degree of nonlinearity present under the concentrated loading, a larger

time increment could be used. These results indicate that the critical
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time increment which can be used depends not only upon the geometry of

the shell but also upon the degree of nonlinearity.
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APPLICATIONS

The purpose of this section is:

(1) To present a comparison of current findings with other theo-
retical and experimental results.

(2) To present solutions to problems that will demonstrate the
capabilities of the computer code.

The first example employs the shallow shell and the axisymmetric
loading described by Klein and Sylvester.19 The results have been veri-
fied by Popov using the normal mode superposition technique.

The shell had a radius of curvature of 22.27 inches, base diameter
of 20 inches, a shell rise of 2.37 inches, and a thickness of 0.41 inches.
The modulus of elasticity and Poisson's ratio were taken to be 10.5 x 106
psi and 0.3, respectively and the ends of the shell were assumed to be
fixed.

Klein and Sylvester present a linear analysis based on conical frus-
tum elements and the numerical integration scheme described in Ref. 20.
The formulation also makes use of a mass matrix based on energy princi-
ples but does not include the effects of rotary inertia. These effects
are not significant for the problem under consideration. The time step
of 1 x 10_5 seconds and the 30 element idealization used in Ref. 19 were
used in this research,

An investigation of Fig. 15 reveals that the agreement is quite
good and the effect of nonlinearities is not significant. The slight
discrepancies at the higher times can conceivably be attributed to the
differences in formulation and method of solution or the fact that dou-

ble precision arithmetic is employed by Klein and Sylvester.
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The second example involves the cylindrical shell described in Ref. 27
having geometric and material properties typical of those used in the mis-
sile industry. The structure is subjected to a blast loading and requires
the use of the 0, 1, and 2 Fourier harmonics. Figure 16 shows a plot of
the time history of the Fourier coefficients of normal displacement at the
free end of the cylinder. The results obtained are identical to the ones
presented in Ref. 27, Houbolt's solution procedure with a time increment
of 5 x 10_6 seconds was used in the solution.

The third example illustrates the versatility of the computer code
and solves the important problem of the symmetric buckling of shallow
spherical caps under a step pressure loading. The problem has been in-

32, 33, 34 and most results are now in

vestigated by other researchers
good agreement. However, at the beginning of this study only the results
of Huang33 and Simitse332 were available and they did not agree.

The shell selected for the study is the one studied experimentally
in Ref. 35 with different values of the shallow shell parameter being ob-
tained by varying the thickness. The results are depicted in Fig. 17.
The current results were obtained by using 30 elements and the numerical
integration scheme presented in Ref. 20 with B = %; however, a check has
been made using Houbolt's method and the results are the same.

This problem again reveals the advantages of the Houbolt's method
over the method of Chan, Cox, and Benfield with B = % . The solution
obtained with Houbolt's method used a time increment of 1 x lO—6 seconds
whereas the method of Chan, Cox and Benfield required a time increment

of .125 x 10—6 seconds., Thus, for this problem Houbolt's method is more

than eight times as efficient as the method of Ref. 20.
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The curves shown in Fig. 17 reveal that the results obtained with
DYNASOR and those presented in Refs. 33 and 34 are in good agreement.

A more detailed discussion of this problem is given in Ref. 21.

The fourth application of the program concerns the solution of a
problem that has never been solved. This problem is the one of asym-
metrical buckling of a shallow cap under a step pressure loading. The
shell used in the study has the same basic geometry as the one used in
the third example but has a thickness corresponding to a shallow shell
parameter A, of 6.

The response of four Fourier harmonics was investigated by both
Houbolt's method and the method of Ref. 20 and the results were the same.
In one case the 0, 1, and 2 harmonics were used and in the second case the
0, 2, and 3. Both cases revealed that for the case of A = 6, there is no
build up in the first or third Fourier harmonics and it is the second
harmonic that reaches relatively large displacements. The same phenom-
enon has previously been observed in the static case.

The loading consisted of a constant uniform step pressure over the
entire shell except for a slight increase over a circumferential angle
of four degrees. It was necessary to do this in order to excite the first,
second and third Fourier harmonics.

Figure 18 depicts the response of the second harmonic for various
pressure ratios and shows how a relatively small increase in the load
can significantly increase the response of the second harmonic when a
critical loading is approached. Figure 19 shows how the displacements
for the second harmonic can build up to values having the same order of

magnitude of those of the symmetric component and at some critical time
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the two combine to give a very large displacement and enable us to de-
fine a buckling load.

The dynamic buckling pressure may be obtained from Fig. 19. It is
seen from this figure that buckling occurs at P/PCr = ,604 as compared
with .64 for symmetrical buckling. However, it is observed from Fig. 19
that the second harmonic is excited appreciably for all values of P/PCr
above .5. Thus, the threshold value is .5. This threshold value has
not been shown to be a buckling load but it is conceivable that if the
calculations were carried for a large enough period of time buckling might
occur. At most, the use of the threshold value is slightly conservative.
The possibility of asymmetrical buckling is depicted in Fig. 17 as any
value above P/PCr = .5.

The fifth example (Fig. 20) demonstrates the feasibility of the fi-
nite element method for the analysis of wave propagation in shells of
revolution. This example solves the problem of a cylindrical bar having
a length of 24 inches, radius of 6 inches, and a wall thickness of 0.1
inches. The modulus of elasticity, Poisson's ratio and the mass density
were taken as 10 x 106 psi, 0.333, and 0.0942 lbm/in3, respectively. The
cylinder was assumed to be fixed at one end and free at the other with the
free end being subjected to a uniformly distributed axial pressure of in-
finite duration having a value of 100 psi. The solution was performed
using Houbolt's method in double precision arithmetic, a time increment
of 1 x 10_6 seconds, and 50 finite elements. The element breakdown was

10 of .24" in length, 10 of .48", 10 of .96", 10 of .48", and 10 of .24"

in length.
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The exact solution is obtained from elementary wave mechanics. The

speed of sound in the material is given by

v o= | —EF (55)

N (l—vz) p

Substituting the material properties into Eq. 55 yields a speed of sound
of 214,749 in/sec. Thus, an expansion wave travels down the cylinder at the
prescribed speed. The theoretical stress behind the wave is 100 psi with
zero stress existing in front of the wave. When the wave reaches the wall
it is reflected as an expansion wave which travels back down the cylinder.
After the time required for the wave to transverse the cylinder in both
directions the state of stress is a constant value of 200 psi. The ex~
pansion wave is reflected from the free end as a compressive wave which
reduces the stress to 100 psi and back to zero after reflection from the
fixed end. This behavior gives displacement of a saw tooth nature as
shown in Fig. 20 along with the finite element results. It is noted that
the agreement is excellent.

Figures 21 and 22 present the displacements and meridional stress
along the length of the cylinder after 50 microseconds. After this period
of time, the wave has travelled through the two changes in length in the
finite element idealization. It is noted that the finite element and
wave theory results are in excellent agreement for displacement and quite
good for stresses.

The solution of the sixth example problem was performed for the

purpose of checking out the code for multiple harmonics. The shell
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selected for this example was a spherical cap with a radius of curva-
ture of 60 inches, a base radius of 4.28 inches, and a thickness of
0.125 inches. The loading was localized as shown in Fig. 23 and was
applied over a two-inch radius circle with the center 3° from the apex.
The solution was obtained using twenty-eight elements and the first
five Fourier harmonics. The method of Ref. 20 with a time increment of
.25 x 10-6 seconds was used in the solution.
Figure 23 is a plot of the vertical deflection of 6 = 0° and
r = 1.56 inches and reveals that the dynamic solution oscillates about
the static solution. Next to the zero harmonic, the first Fourier har-
monic was found to give the most significant contribution. The lower
displacement peak that is experienced at a time of approximately 1000 usec
is due to the fact that the zero and the first harmonics are out of phase.
Figures 24 through 27 represent plots of the stress resultants as a
function of time. 1In all cases, the dynamic solution appears realistic
and oscillates about the static value. The effect of nonlinearities was

not highly significant for the loading considered.
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COMPUTER PROGRAM

The analysis and numerical solution described herein have been pro;
grammed in double precision in the FORTRAN IV language and carried out
on an IBM 360/65 computer. For computation efficiency, the computer code
is logically separated into two parts. The first code, called DYNASOR I
(DYnamic Nonlinear Analysis of Shells Of Revolution), accepts a descrip-
tion of the structure, generates stiffness and mass matrices, and writes
them on tape for input to the second code, DYNASOR II. DYNASOR II gener-
ates generalized forces from a mechanical and thermal load history, reads
the stiffness and mass matrices from tape, and then solves the initial
value problem based upon given initial displacements and velocities.

Segmenting the computer code in this manner has several advantages.
Once an element configuration for a structure is selected, DYNASOR I is
executed only once at which time stiffness and mass matrices for up to
twenty Fourier cosine harmonics are generated and stored on tape. DYNASOR II
then uses this tape as input to perform analyses using various loading
conditions, time increments, or harmonic numbers without having to gener-
ate stiffness and mass properties anew for each analysis. This results
in the saving of a considerable amount of computer time, especially if
a large number of analyses are performed on the same structure. A maximum
of five harmonics is permitted in the solution by DYNASOR II with the
selection of which harmonics to use being based on the particular pro-
blem at hand. The program automatically scans the tape and inputs only

stiffness and mass matrices for those harmonics which are requested. In
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addition, other computer codes can be interfaced with DYNASOR I so that
they utilize the stiffness, mass, and other properties stored on tape.
SNASOR II, a computer code presently under development for the static
nonlinear analysis of shells of revolution, accepts this tape as input
so that stiffness properties do not have to be generated. 1In addition,
a program to calculate mode shapes and frequencies utilizes the mass and
stiffneés matrices stored on this tape.

Considerable time has been devoted to making the computer program
an efficient, versatile, and easy to use code. To avoid the tedious task
of inputting the coordinates and slopes at individual nodal points, sev-
eral subroutines have been included in DYNASOR I which automatically
generate this information with only a minimum of input data required.
The program will generate the geometry for any shell of revolution the
meridian of which can be made up of a combination of straight lines,
circular arcs, or parabolic sections.

The mechanical load history is described by specifying the pressure
distribution over the element at discrete time intervals with a linear
variation being assumed between the specified times. For a particular
element, the pressure distribution is assumed to be constant in the
meridional direction and to vary as a step function in the circumferen-
tial direction. The thermal load history is described similarly by
either inputting the temperature and temperature gradient distribution
or by inputting the Fourier coefficients for the temperature and tem-

perature gradient distribution.
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The computer code has a restart provision permitting the program
to be restarted at a particular time increment once the program has
been run up to that time increment. The program allows restart in-
formation to be placed on tape periodically during the execution of
DYNASOR II. If subsequent analysis of the output indicates that a
smaller time incfement is needed, then the program can be automatically
cycled to any time increment for which restart information is stored
on tape and then the analysis restarted with a small ﬁime increment.

This restart feature can save a considerable amount of computer time
particularly iﬁ buckling analyses.

The computational effort required in evaluating the nonlinear terms
has been considerably'lessened since the original method described in
Ref. 4. Rather than evaluating these nonlinearities in terms of the
o coefficients and ﬁhep transforming back to the cylindrical coordinate
system, the nonlinearities are written in finite difference form di-
rectly in terms of the generalized nodal coordinates. In addition, the
third and fourth order trigonometric integrals discussed in Eq. 12 are
evaluated exactly and stored in an array rather than calculating them
each and every time they are needed. 1In practice, it turns out that most
of these integrals are zero. Consequently, program logic is organized so
that when the integrals for a particular harmonic combination are zero,
the program augomatically skips the calculation of the nonlinear terms
since needless calculation would result only in a zero contribution. The
solution of the linear algebraic set of equilibrium equations is facili-

tated through the use of an efficient Gaussian elimination procedure.
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To minimize storage requirements, the stiffness matrix is arranged as
a one-dimensional array with only the upper band portion of the sym-
metric stiffness matrix being stored. The solution of 204 equilibrium
equations requires less than 0.1 seconds on the IBM 360/65.

The program output consists of all input control words, input loads
and temperatures, generalized forces, stiffness and mass matrices, and
the resultant displacements and stress resultants. The displacements
and stress resultants are printed at all or any of the time increments
specified and for as many circumferential angles as desired.

The program, as written for the IBM 360/65 computer, allows a
solution using up to fifty elements and five Fourier harmonics. 1In
double precision, DYNASOR I requires approximately 96,000 bytes of
storage while DYNASOR II requires 282,000 bytes. Both prbgrams require
one scratch disk and one disk or tape for permanent storage of the
stiffness and mass properties of the structure. Considering the com-
plexity of the computer program, it is extremely efficient. TFor example,
the single precision solution to the problem in Fig. 16 using thirty
elements and three harmonics was obtained in 13 minutes. The double
precision solution to the problem in Fig. 20 using one harmonic and fifty
elements required 7 minutes. In double precision, approximately 0.4
seconds of computer time are required per time cycle using one Fourier
harmonic and fifty elements. For five harmonics and fifty elements, 4
seconds are required per time cycle. Few moderately nonlinear problems
will require more than thirty minutes of computer time on the IBM 360/65.
With other computers, such as the CDC 6600, this time could be cut

appreciably and the allowable number of harmonics and elements increased.
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CONCLUSIONS

A formulation and computer code has been developed which allows the
solution of problems in the nonlinear dynamic analysis of shells of revolu-
tion in reasonable periods of time on the computer. Use of the computer
code has been demonstrated through the solution of a wide class of diffi-
cult and practical problems.

The particular noteworthy features of the formulation are:

1. The nonlinear terms are taken to the right-hand side of the
equations of equilibrium and treated as psuedo forces.

2. The nonlinear terms are evaluated by using linear displacements
in the meridional distance, s, for the normal displacement, w, as well
as the meridional and circumferential displacements. Rapid convergence
of results with mesh refinement is observed.

3. Houbolt's method of solution is extended to treat nonlinear prob-
lems by using a linear extrapolation to obtain the nonlinear psuedo loads
at t + At in terms the loads at t and t - At., It is demonstrated that
this procedure is stable for highly nonlinear problems.

The method of solution which proved to be the most stable is Houbolt's
method with the nonlinear terms being determined by a first order Taylor's
expansion. Undoubtedly, the use of a Taylor's expansion contributes to
making the method unstable for large time increments; but, in spite of
this, Houbolt's method is more stable than the other numerical methods

which do not require an extrapolation of the loads.
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APPENDIX A

MASS MATRIX

Zero Harmonic

2omtSrds
2pmtSrsds
2
2ontfrs ds
3
20mtfrs ds
Mg =My = Mg =0
2pﬁtfrszds + E%E*'f rds
3 pnt3
2pmtfrsTds + 3 J rsds
4 p1rt3 2
2p7wtfrs ds +-——75— J rsTds
3
QﬁE—'I r¢'ds
6
TTt3
EL:;— S rs¢é'ds
Myg = O

3
antfrséds + ER%E— J rszds

ZpﬂterSdS + pﬂt3fré3ds
Qﬁg—-f r¢ 'sds

t3 2
215— J re'sTds

Myg =0

3
2pﬂter6dS + QQ%E"'I rsads
3
9£§-f r¢'szds

-3
Qﬁgﬁ-f r¢'83ds
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47

=i

55

56

57

66

=

67

=1

77

Mg =0
3
20mtSrds + S re! ds
prt ' 2
2o0mtSrsds + . J rd' sds
Mgg = O

’ 2 ﬂt3 2
2pmtfrs ds + E—g—-f rd's"ds

Mgg = 0

Mg = Mgg = 0

Harmonic
- 3
.2 pTt ds
ortfrds + i 12 J -
3 .
2 ort sds
prtfrsds + i 12 i) "
' 3
pﬂtfrszds + 12 BlT—t—-.f
T

3
QﬂterBdS + 12 E%%— S sSds

Ml6 =0

3
igwt I cosQ ds
12 r
3
Qﬂt I cos¢ ods
12 r
2 ﬂt3 2 ﬂt3
prtfrs ds + QEE—-I rds + i E*——-f

: 3
pntfrs3ds + EEE“'I rsds + 12 E%%"‘f §;Q§

6

4 93 2 2Q3
prtfrs ds + J rs ds + i S
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3
EL"‘ "“*Jﬁ sds

12
3
= —“*Q-s de
12 r
3 3 4
.2
Oﬂtfrs4ds + 9§E—~f rszds +icernt r s ds
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t3
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t3 2
Bﬁg‘ / re's"ds
OTrt3 s cos¢ szd
17 r s
3
LTmt” . cosd 3
o s7ds
3 3 6
3915—-f rséds + pntfrs ds + 12 EEE;_I s ds
4 12 r
0ﬂt3 2
4 / ro's“ds
3
BTE_ s r¢'s ds
T4
pvt3 f'£9§$-ssds
RV T
3
D“t cosd 4
12 f — 8 dS

ned
ontfrds + S [ r¢! 24e

Mgg = 0

2 pTE 3
prtfrs ds + -_._.f ¢'

pﬂt3 s cosz¢ s
12

pwt3 S C082¢ sds
12 r
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3 2
pTL cos ¢ 2
17 S - s ds

- 2
M88 = putfrs ds +

The mass matrix in structural coordinates is obtained from

%] = [A]T (][]




Appendix B. Linear Thermal Loads

Using the strain-displacement relations, the partial derivatives of

t . . s
U, with respect to the coefficients, o

L se+:0, Ccan be obtained from

1’ % 8

Eq. 26 for harmonic i > 0:

ti

oU e ig i .i.2;_d§_
L. BlT ¢'rds + BZT cos¢ ds + BAT i "
Bal
1
anl i i i..2
= = - B. T | ¢'srds + B,T° ! scos¢ ds + B, T' [i I 8 4g - sin¢ ds]
i 1 2 4 T
Ja
2
anl i 2 i 2 i i
=~ = - B.T J ¢'s“rds + B, T ! s“cos¢ ds - 2B, T'" / rds + B, T'
i 1 2 3 4
e
3
2 52 '
ER o ds - 2 I s sin¢ ds]
sy i 3 i, 3 i i
—= =3 T" J ¢'s’rds + B,T° ! s cos¢ ds - 6B,T' ! srds + B,T'
i 1 2 3 4
o0
4
'3
[i2 I %—‘ds -3 52 sin¢ ds]
auil ' i i i
=~ = B.T ) sin¢ ds - B,T' ! ¢'" rds - B,T'"" J ¢' sin¢ rds
3ot 2 37 4
5

(B-1)




ot
He

=B.T  J rds +B.T" ! s sing ds - B Tt g (¢"s + ¢') rds

aag 1 2 3
- BAT'l I s¢' sin¢ ds
'anl i i cos
L _p.rii s + BTt 4 J 080 g
80L1 2 4 T
7
aUEl i i S
= = B. T i J sds +B,T'" i | = cos¢ ds
aal 2 4 r
8
where Bl = Clﬂ(as + vseae)

B, = Czn(ae + vesas)

o)

B, = Dln(aS + V6%

B, = Dzn(ae + vesas)

P « (]
¢ ds
¢ ="

ds




For harmonic i = 0:

il o o
=2[ - B. T J ¢" rds + BT ' cos¢ ds ]

0° 1 2

1
BUEO ) ) 0

=2[ - B,T / ¢'srds + B,T° | s cos¢ ds - B,T'"" ! sin¢ ds]

302 1 : 2 4
%2
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oU
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302 1 27 3
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